Definitions
from Wiktionary, Creative Commons Attribution/Share-Alike License.
- noun set theory A
set together with anequivalence relation .
Etymologies
from Wiktionary, Creative Commons Attribution/Share-Alike License
Support
Help support Wordnik (and make this page ad-free) by adopting the word setoid.
Examples
-
A quotient is a setoid stuffed into a set, an abstract datatype whose interface ensures representation-hiding.
Planet Haskell Conor 2010
-
A quotient is a setoid stuffed into a set, an abstract datatype whose interface ensures representation-hiding.
Planet Haskell 2010
-
P ≡ Q = let open EqR (PropEq. setoid († A)) in begin
Planet Haskell 2009
-
P ≡ Q = let open EqR (PropEq. setoid († A)) in begin
Planet Haskell 2009
-
P ≡ Q = let open EqR (PropEq. setoid († A)) in begin
Planet Haskell 2009
-
P ≡ Q = let open EqR (PropEq. setoid († A)) in begin
Planet Haskell 2009
-
Bool: where cont: f a '≡ false → f b' ≡ true → a ≢ b cont fa '≡ ff fb' ≡ tt a ≡ b = let .... fa '≡ fb': f a '≡ f b' fa '≡ fb' = cong f a '≡ b' in let open EqR (PropEq. setoid Bool) in ff ≢ tt (begin false ≈ ⟨ sym fa '≡ ff ⟩
Planet Haskell 2009
-
Bool: where cont: f a '≡ false → f b' ≡ true → a ≢ b cont fa '≡ ff fb' ≡ tt a ≡ b = let .... fa '≡ fb': f a '≡ f b' fa '≡ fb' = cong f a '≡ b' in let open EqR (PropEq. setoid Bool) in ff ≢ tt (begin false ≈ ⟨ sym fa '≡ ff ⟩
Planet Haskell 2009
-
Bool: where cont: f a '≡ false → f b' ≡ true → a ≢ b cont fa '≡ ff fb' ≡ tt a ≡ b = let .... fa '≡ fb': f a '≡ f b' fa '≡ fb' = cong f a '≡ b' in let open EqR (PropEq. setoid Bool) in ff ≢ tt (begin false ≈ ⟨ sym fa '≡ ff ⟩
Planet Haskell 2009
Comments
Log in or sign up to get involved in the conversation. It's quick and easy.